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Abstract
It is shown that it is possible to establish sum rules that must be satisfied at the
nodes and extrema of the eigenstates of confining potentials which are functions
of a single variable. At any boundstate energy the Schrödinger equation has
two linearly independent solutions one of which is normalizable while the
other is not. In the domain after the last node of a boundstate eigenfunction the
unnormalizable linearly independent solution has a simple form which enables
the construction of functions analogous to Green’s functions that lead to certain
sum rules. One set of sum rules gives conditions that must be satisfied at the
nodes and extrema of the boundstate eigenfunctions of confining potentials.
Another sum rule establishes a relation between an integral involving an
eigenfunction in the domain after the last node and a sum involving all the
eigenvalues and eigenstates. Such sum rules may be useful in the study of
properties of confining potentials. The exactly solvable cases of the particle in
a box and the simple harmonic oscillator are used to illustrate the procedure.
The relations between one of the sum rules and two-particle densities and a
construction based on supersymmetric quantum mechanics are discussed.

PACS numbers: 02.30.Gp, 03.65.−w, 11.30.Pb

1. Introduction

There is a well-defined procedure for constructing Green’s functions for describing solutions to
linear second-order differential equations with inhomogeneous terms [1]. This procedure may
be employed to study solutions to the Schrödinger equation in one dimension. For problems
with spherical symmetry partial wave decomposition effectively reduces the three-dimensional
Schroedinger equation to a radial equation in r-space and hence the techniques for constructing
Green’s functions in one dimension are applicable. Green’s functions may be used to establish
trace formulae in which the integrals over Green’s function may be related to sums involving
the eigenvalues of the homogeneous differential equation [2–4]. Such trace formulae are very
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useful in checking the accuracy of the numerically computed eigenvalues. The recent interest
in the real spectra of non-Hermitian Hamiltonians exhibiting PT symmetry [5–7] has initiated
accurate numerical computation of eigenvalues of PT symmetric Hamiltonians and the trace
formulae have proved to be useful.

In this work we consider the two linearly independent solutions to the Schroedinger
equation at an eigenenergy and show that it is possible to construct functions which are
suitable for studying various sums over eigenstates in the domain outside the last node of a
chosen eigenfunction. In section 2 it is shown that it is possible to construct new sum rules
involving all the eigenstates and eigenvalues. In section 3 the examples of a particle in a box
and the simple harmonic oscillator are used to illustrate the sum rules. The relations between
the sum rules, two particle densities and super symmetric quantum mechanics are discussed
in section 4. Units in which h̄ = 1 and the mass µ = 1

2 are used throughout the paper so that
h̄2

2µ
= 1.

2. Nodes, extrema and sumrules

We develop a formalism in this section which would be suitable for applications to either the
radial Schrödinger equation for a specific partial wave in the domain [0,∞] or the full line
[−∞, +∞]. We consider the solutions to

d2

dr2
�j = (V − Ej)�j (1)

satisfying the boundary conditions at the lower and upper end points of the domain at x0

and x1,

Ltr→x0�j → 0, Ltr→x1�j → 0 (2)

for the normalized eigenstates �j corresponding to the eigenvalues Ej . The state with j = 1
corresponds to the groundstate with no nodes and the state �j has (j − 1) nodes. Let the
nodes of the eigenstate �n be at r = R0 and let the outermost node be at r = R̃0. Then �n

has no nodes in the domain R̃0 < r < x1. The second linearly independent solution at En is
then given by

�̃n(r) = �n(r)

∫ r

R

1

�2
n(y)

dy, (3)

where R is a constant which may be chosen according to some appropriate requirement. If
we choose R > R̃0 then in the domain R < r < x1 there can be no infinities arising from the
denominator inside the integral and �̃n is well defined in this domain. The Wronskian relation

�n

d

dr
�̃n − �̃n

d

dr
�n = 1 (4)

shows that Ltr→R0�̃n �= 0 but has a finite value determined by the derivative of �n at r = R0.
The differential equation satisfied by the eigenstates may be used to represent the

Wronskian between the states j and k (j �= k) in terms of the overlap integrals between
the different orthonormal eigenstates in the form∫ r

x0

�k(y)�j (y) dy =
∫ r

x1

�k(y)�j (y) dy = (�k�̇j − �̇k�j )

(Ek − Ej)
, (5)

where the dot denotes a derivative with respect to r. If we now define

G(r, r̃) =
∑
j �=n

�j (r)�j (r̃)

(En − Ej)
, (6)
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where the sum is over a complete set of eigenstates excluding the state n, then using the
equality in equation (5) it can be established that(

�n(r)
∂

∂r
− �̇n(r)

)
G(r, r̃) =

∑
j �=n

�j (r̃)

∫ r

x1

�n(y)�j (y) dy. (7)

Green’s functions G(r, r̃;E) considered in the usual textbooks (see [1], for example) are
constructed at energies E which are not one of the eigenenergies En. In contrast, the function
G considered here is constructed with E = En. Using the completeness relation satisfied by
the eigenstates ∑

j �=n

�j (r̃)�j (y) = δ(r̃ − y) − �n(r̃)�n(y) (8)

it can be shown that(
�n(r)

∂

∂r
− �̇n(r)

)
G(r, r̃) = −�n(r̃)

(
θ(r − r̃)

∫ r

x1

+ θ(r̃ − r)

∫ r

x0

)
�2

n dy, (9)

where θ(z) is the unit step function which vanishes when z < 0 and has value 1 when z > 0.

2.1. Sum rules at nodes of �n

Various interesting relations follow from the differential equation (9). If we choose r = R0,
where R0 is a node of the state �n at which �n(R0) = 0 then we get the relation∑
j �=n

�j (R0)�j (r̃)

(En − Ej)
= �n(r̃)

�̇n(R0)

(
θ (R0 − r̃)

∫ R0

x1

+ θ(r̃ − R0)

∫ R0

x0

)
�2

n dy. (10)

In particular, setting r̃ = R0 in equation (10) leads to

∑
j �=n

�2
j (R0)

(En − Ej)
= 0. (11)

Squaring both sides of equation (10), integrating over the variable r̃ in the full range [x0, x1]
and using the orthonormality of the states �j it may be shown that

∑
j �=n

�2
j (R0)

(En − Ej)2
= 1

�̇2
n(R0)

∫ R0

x0

�2
n dy

∫ x1

R0

�2
n dz. (12)

At any node of any eigenstate the rest of the eigenstates must fulfil the conditions implied by
equations (11) and (12).

2.2. Sum rules at extrema of �n

Another special case of equation (9) arises when r = R1, where R1 is an extremum of �n

which satisfies �̇n(R1) = 0. Equation (9) simplifies to∑
j �=n

�̇j (R1)�j (r̃)

(En − Ej)
= �n(r̃)

�n(R1)

(
θ(R1 − r̃)

∫ x1

R1

− θ(r̃ − R1)

∫ R1

x0

)
�2

n dy (13)

which when differentiated with respect to r̃ and evaluated at r̃ = R1 leads to the identity

∑
j �=n

�̇2
j (R1)

(En − Ej)
= −δ(r̃ − R1)|r̃=R1 . (14)
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Using the completeness relation of the eigenstates the above relation may also be given in the
form ∑

j �=n

(
�̇2

j (R1)

(En − Ej)
+ �2

j (R1)

)
= −�2

n(R1). (15)

Squaring both sides of equation (13), integrating over the variable r̃ in the full range [x0, x1]
and using the orthonormality of the states �j it can be shown that

∑
j �=n

�̇2
j (R1)

(En − Ej)2
= 1

�2
n(R1)

∫ R1

x0

�2
n dy

∫ x1

R1

�2
n dz. (16)

At any extremum of any eigenstate the derivative of all other eigenstates must satisfy the
conditions implied by equations (15) and (16).

2.3. Integral relations valid outside the last node of �n

The differential equation (9) satisfied by the function G defined by equation (6) is a first-order
differential equation which can be brought to the form

∂

∂r

G (r, r̃)

�n(r)
= �n(r̃)

�2
n(r)

(
θ (r − r̃)

∫ x1

r

�2
n dz − θ (r̃ − r)

∫ r

x0

�2
n dz

)
(17)

and can be integrated from an arbitrary point r2 to get the relation

G(r, r̃)

�n(r)
− G(r2, r̃)

�n (r2)
= �n(r̃)

∫ r

r2

dy

�2
n

(
θ (y − r̃)

∫ x1

y

− θ (r̃ − y)

∫ y

x0

)
�2

n dz. (18)

It is also possible to establish a differential equation for G(r, r). Using equations (5) and
(6) and the limiting value Ltz→0 θ(z) = 1/2 it can be established that

S(r) ≡ G(r, r) =
∑
j �=n

�2
j (r)

(En − Ej)
(19)

satisfies

�2
n

d

dr

S

�2
n

=
(∫ x1

r

�2
n dy −

∫ r

x0

�2
n dy

)
. (20)

This equation can be integrated from any point r2 to give

S(r) = �2
n(r)

�2
n (r2)

S (r2) + �2
n(r)

(∫ r

r2

dy

�2
n

(∫ x1

y

�2
n dz −

∫ y

x0

�2
n dz

))
. (21)

Different choices of r̃ and r2 in equation (18) lead to different integral relations. If we set
r̃ = r2 in equation (18) then the resulting expression can be rearranged to give

G(r, r2)

�n(r)�n (r2)
− G(r2, r2)

�2
n (r2)

=
∫ r

r2

dy

�2
n(y)

(
θ (y − r2)

∫ x1

y

− θ (r2 − y)

∫ y

x0

)
�2

n(z) dz. (22)

By interchanging the labels r and r2 another relation like that given above may be derived and
by addition of the two relations we can show that∑

j �=n

1

En − Ej

(
�j(r)

�n(r)
− �j (r2)

�n (r2)

)2

= −
∫ r>

r<

dy

�2
n(y)

, (23)

where r< (r>) is the smaller (larger) of (r, r2). The integrand in equation (23) is free of
singularities in the domain of integration if both r and r2 are greater than the last node R̃0

of �n.
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Various integral relations follow from equation (23). For example multiplying
equation (23) by �2

n(r)�
2
n (r2), integrating over both the variables from R̃0 to x1 and using

the notation

Ajk =
∫ x1

R̃0

�j(y)�k(y) dy (24)

and noting that when r = R0 is a node of �n equation (5) gives

Anj = �̇n(R0)�j (R0)

(En − Ej)
, j �= n, (25)

we can establish that

Ann

∑
j �=n

Ajj

(En − Ej)
− �̇2

n(R̃0)
∑
j �=n

�2
j (R̃0)

(En − Ej)3
= −

∫ x1

R̃0

�2
n(r) dr

∫ x1

r

dy

�2
n(y)

∫ x1

y

�2
n(z) dz

= −
∫ x1

R̃0

dr

�2
n(r)

∫ r

R̃0

�2
n(y) dy

∫ x1

r

�2
n(z) dz.

(26)

A special case of the above relation arises if we consider the groundstate with n = 1 for which
R̃0 = x0 and for all the eigenstates �j(R̃0) = 0. We thus get the sum rule

∞∑
j=2

1

(E1 − Ej)
= −

∫ x1

x0

�2
1 (r) dr

∫ x1

r

dy

�2
1 (y)

∫ x1

y

�2
1 (z) dz (27)

which expresses the inverses of the separation of the eigenvalues of a confining potential from
the groundstate eigenvalue in terms of an integral over the nodeless groundstate eigenfunction.

The main results derived in this paper are the relations expressed in equations (9), (11),
(12), (15), (16), (23), (26) and (27). In the following sections exactly solvable examples will
be used to illustrate the sum rules derived in this section.

3. Examples of sum rules at nodes and extrema

3.1. Particle in a box

In this section we consider the example of a free particle confined in a box with infinite walls
at x0 = 0 and x1 = π . The normalized eigenfunctions and eigenenergies are given by

�j(r) =
√

2

π
sin jr, Ej = j 2, j = 1, 2 . . . . (28)

There is a node of the eigenfunction �n at R0 = π(n − 1)/n. We first examine the sum

G(r, r̃) = 2

π

∑
j �=n

sin jr sin j r̃

(n2 − j 2)
(29)

which can be simplified using partial fractions, addition formulae for trigonometric functions
and standard sums over sine functions [8] to the form

G(r, r̃) = sin nr sin nr̃

πn

(
− 1

2n
+ r cot nr + r̃ cot nr̃ − π cot nr>

)
, (30)

where r> is the larger of (r, r̃). Using∫ R0

0
�2

n (q) dq = R0

π
= n − 1

n
(31)
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and

�̇n(R0) =
√

2

π
n cos (n − 1) π = (−1)n−1n

√
2

π
(32)

it is simple to show that for r = R0 equation (30) becomes

G(R0, r̃) = �n(r̃)

�̇n(R0)

(
θ(r̃ − R0)

n − 1

n
− θ (R0 − r̃)

1

n

)
(33)

thereby verifying equation (10). For the choice r̃ = R0 = π − π/n equations (29) and (33)
can be used to give

∑
j �=n

sin2 jR0(
n2 − j 2

) = 0 (34)

verifying equation (11). Equation (33) can be squared and integrated over r̃ to show that

∑
j �=n

sin2 jR0

(n2 − j 2)2
= π2

4

n − 1

n4
(35)

which is the sum rule arising from equation (12) in this case.
We next examine

Ġ(r, r̃) = 2

π

∑
j �=n

j
cos jr sin j r̃

n2 − j 2
(36)

which can be evaluated by taking the derivative of the relation in equation (30) with respect to
r. There is an extremum of �n at R1 = π − π/ (2n). Hence

Ġ(R1, r̃) = sin nr̃

π
(−R1 csc nR1 + π csc nR1θ (R1 − r̃)) . (37)

Using ∫ R1

0
�2

n dy = R1

π
(38)

it can be shown that

−θ (r̃ − R1)

∫ R1

0
�2

n dy + θ (R1 − r̃)

∫ π

R1

�2
n dy =

(
−R1

π
+ θ (R1 − r̃)

)
(39)

which together with equation (37) verifies equation (13) at the last extremum of �n at R1.
Differentiation of equation (37) with respect to r̃ , evaluation at the point r̃ = R1 and use of
the completeness relation leads to

2

π

∑
j �=n

j 2 cos2 jR1

(n2 − j 2)
= − 2

π

∑
j

sin2 jR1. (40)

It is possible to prove this directly by starting from the equality in equation (30) for r = r̃ and
show that for R1 = π − π/ (2n),

π

2
G(R1, R1) =

∑
j �=n

sin2 jR1

n2 − j 2
= − 1

4n2
,

π

4

(
∂2

∂r2
G(r, r)

) ∣∣∣∣
r=R1

=
∑
j �=n

j 2 cos 2jR1

n2 − j 2
= −3

4

(41)
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which leads to the relation∑
j �=n

(
j 2 cos2 jR1

(n2 − j 2)
+ sin2 jR1

)
= −1 = −sin2 nR1 (42)

thereby verifying equation (15). By squaring equation (37) and integrating over r̃ it can also
be shown that ∑

j �=n

j 2 cos2 jR1

(n2 − j 2)2
= π2

16

2n − 1

n2
(43)

which is the sum rule arising from equation (16) in the present case.
We next examine equation (21) which in this example becomes

� = G(r, r)

�2
n(r)

− G(r2, r2)

�2
n(r2)

=
∫ r

r2

dy

sin2 y

(∫ π

y

sin2 nz dz −
∫ y

0
sin2 nz dz

)
. (44)

Using equation (30) it can be shown that

� = 2r − π

2n
cot nr − 2r2 − π

2n
cot nr2 (45)

in agreement with the direct evaluation of the integral on the right-hand side of equation (44).
We next examine equation (23) which in this example gives the relation

G(r, r)

�2
n(r)

+
G(r2, r2)

�2
n(r2)

− 2
G(r, r2)

�n(r)�n(r2)
= −π

2

∫ r>

r<

dy

sin2 y
= π

2n
(cot nr> − cot nr<). (46)

Using equation (30) to express the various terms on the left-hand side of equation (46) it is
easy to check that the sum of the terms on the left-hand side yields the expression on the
right-hand side of the equation.

The triple integral on the right-hand side of equation (27) for this example can be evaluated
to give

2

π

∫ π

0
sin2 x dx

∫ π

x

dy

sin2 y

∫ π

y

sin2 z dz = 3

4
(47)

and using partial fractions it may be shown that
∞∑

j=2

1

(1 − j 2)
= −3

4
(48)

thus verifying equation (27).

3.2. Simple harmonic oscillator

We consider an oscillator potential V = x2 in the range [−∞,∞] corresponding to a frequency
ω = 2. The oscillator length parameter equals 1 in the units we have used in this paper. The
energy levels and the eigenfunctions are given by

Ej+1 = (2j + 1), �j+1 =
(

1

π

)1/4
√

1

2j j !
exp(−x2/2)Hj (x), j = 0, 1, 2, . . . ,

(49)

where Hj(x) are Hermite polynomials which satisfy

dHj

dx
= 2jHj−1(x), H2j (0) = (−)j

(2j)!

j !
, H2j+1(0) = 0. (50)
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We examine the sum rules arising from the choice n = 2 which corresponds to the first excited
state which has a single node at x = 0. All the antisymmetric states with even values of j

vanish at x = 0 and the symmetric states corresponding to odd values of j have limiting values
at x = 0 given by

�2
2j+1(0) =

√
1

π

(
1

22j (2j)!

) (
(2j)!

j !

)2

, j = 0, 1, . . . , (51)

where the first two factors on the right-hand side arise from the normalization integrals of the
harmonic oscillator eigenfunctions [9] and the last factor arises from the values of the even
order Hermite polynomials at x = 0 [10]. Hence

∞∑
j �=2

�2
j (0)

E2 − Ej

=
√

1

4π

(
−

∞∑
k=0

(2k)!

(2kk!)2

1

2k − 1

)

=
√

1

4π
Ltz→1 (1 − z)1/2 = 0 (52)

which verifies equation (11) for n = 2.
We next examine

∞∑
j �=2

�2
j (0)

(E2 − Ej)2
=

√
1

16π

∞∑
k=0

(2k)!

(2kk!)2

1

(2k − 1)2

=
√

1

16π
Ltz→1(z arcsin z + (1 − z2)1/2) =

√
π

8
. (53)

The normalized eigenfunction for n = 2 given by

�2(x) =
(

4

π

)1/4

x exp(−x2/2) (54)

can be used to show that

1

�̇2
2 (0)

∫ 0

−∞
�2

2 dy

∫ ∞

0
�2

2 dz =
√

π

8
(55)

which when considered together with equation (53) verifies equation (12) for the n = 2 first
excited state of the simple harmonic oscillator.

To examine the sum rule arising from extrema of eigenfunctions we consider the
groundstate n = 1 which has an extremum at x = 0. For all the symmetric states corresponding
to all odd values of j the derivative of the eigenfunction at x = 0 vanishes and for the
antisymmetric states corresponding to even values of j the derivative at x = 0 is given by

�̇2
2j (0) =

√
1

π

1

22j−1

1

(2j − 1)!

(
(2j)!

j !

)2

, j = 1, 2, . . . . (56)

Using the values of the eigenfunctions and their derivatives at x = 0 given by equations (51)
and (56) we can show that

∑
j �=1

(
�̇2

j (0)

E1 − Ej

+ �2
j (0)

)
= −

√
1

π

( ∞∑
k=0

−
∞∑

k=1

)
(2k)!

(2kk!)2

= −
√

1

π
= −�2

1 (0) (57)

thereby verifying equation (15) for the groundstate of the oscillator.
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We next consider
∞∑

j=2

�̇2
j (0)

(E1 − Ej)2
=

√
1

4π

∞∑
k=0

1

(2kk!)2

(2k)!

(2k + 1)

=
√

1

4π
Ltz→1(arcsin z) =

√
π

16
. (58)

It can be shown that for the normalized groundstate eigenfunction

�1(x) =
(

1

π

)1/4

exp(−x2/2),
1

�2
1 (0)

∫ 0

−∞
�2

1 dy

∫ ∞

0
�2

1 dz = 1

4

√
π (59)

which when taken together with equation (58) verifies the sum rule given by equation (16) for
the n = 1 groundstate of the oscillator.

4. Discussion

In this paper sum rules which must be satisfied at the nodes and extrema of boundstate
eigenfunctions of confining potentials have been established. The sum rules in equations (11),
(12), (15) and (16) have been verified for the case of a particle confined in a box and also
explicitly for the case of a simple harmonic oscillator in the ground or first excited states.
However the sum rules are valid for all states of the oscillator and for all confining potentials.
When scattering states are present the expressions have to be modified by the addition of
an integral to take account of the contribution from the scattering states to the sum over the
contribution from the discrete states.

We have shown that in the domain after the last node of an eigenfunction the feature
that the inverse of the eigenfunction is singularity free may be used to establish a variety
of relations between the values of all the other eigenfunctions in this region and integrals
involving the nodeless eigenfunction. We have illustrated the sum rules in equations (23) and
(27) for the case of a particle in a box for which the sums and integrals converge and can be
carried out analytically. For the harmonic oscillator the sum and integral in equation (27) do
not converge.

The antisymmetric wavefunction for two non-interacting identical fermions moving in
the same single particle potential V such that one of them is in the state �n and the other in
�j is given by

�nj (r1, r2) =
√

1
2 (�n(r1)�j (r2) − �n(r2)�j (r1)). (60)

The relationship in equation (23) may also be given in terms of �nj in the form

∑
j �=n

�2
nj (r1, r2)

En − Ej

= −1

2
�2

n(r1)�
2
n(r2)

∫ r>

r<

dy

�2
n

(61)

which sheds an interesting light on the sum rule in terms of joint probability density of
two-particle states.

Supersymmetric quantum mechanics may be used to interpret the integral on the right-
hand side of equation (26). If we consider a potential Ṽ which is identical to V in the region
outside the last node of �n at R̃0 but has an infinite wall at the last node, then the boundstate
solutions in Ṽ must vanish at r = R̃0 and as r → x1. The groundstate energy of Ṽ must be
Ẽ1 = En because �n goes to zero at r = R̃0 and as r → x1 but has no nodes inbetween. �n

is the groundstate eigenfunction of Ṽ but has to be renormalized to 1 in the region [R̃0, x1].
Let the other boundstate eigenvalues of Ṽ satisfying boundstate boundary conditions at R̃0



14162 C V Sukumar

and x1 be Ẽj , j = 2, 3, . . . . A supersymmetric partner to the potential Ṽ constructed by the
elimination of its groundstate at Ẽ1 = En is

Ṽ 1 = Ṽ − d2

dr2
ln �n(r), r > R̃0, (62)

which is free of singularities for r > R̃0. This construction which is based on the methods
of supersymmetric quantum mechanics [11] guarantees that the boundstate spectrum of Ṽ 1 is
identical to that of Ṽ except for missing the groundstate of Ṽ at Ẽ1 (i.e.) Ṽ 1 has spectrum
Ẽj , j = 2, 3, . . . . It may be shown that a solution at the energy En in Ṽ 1 is �̃ = 1/�n.
From this solution two other solutions which satisfy boundary conditions at R̃0 and x1 can be
constructed in the form

�̃1 = 1

�n(r)

∫ r

R̃0

�2
n(y) dy, Ltr→R̃0

�̃1(r) → 0,

�̃2 = 1

�n(r)

∫ r

x1

�2
n(y) dy, Ltr→x1�̃2(r) → 0

(63)

with the Wronskian

W = �̃1
d

dr
�̃2 − �̃2

d

dr
�̃1 =

∫ x1

R̃0

�2
n(y) dy. (64)

These solutions may be used to construct a Green’s function for the potential Ṽ given by

G̃1(r, r̃ > r) = �̃1(r)�̃2(r̃)

W
, Ltr→R̃0

G̃ → 0, Ltr̃→x1G̃ → 0 (65)

and G̃1(r, r̃) = G̃1(r̃, r). The trace of this Green’s function [3] is related to the spectrum of
Ṽ 1 by ∫ x1

R̃0

G̃1(r, r) dr = 1

W

∫ x1

R̃0

dr

�2
n

∫ r

R̃0

�2
n dy

∫ r

x1

�2
n dz =

∑
j �=1

1

En − Ẽj

. (66)

Using equations (60), (61), (64) and (66) it may be shown that∑
j �=n

1

En − Ej

∫ x1

R̃0

∫ x1

R̃0

�2
nj (r1, r2) dr1 dr2 = W

∫ x1

R̃0

G̃1(r, r) dr

=
(∫ x1

R̃0

�2
n(y) dy

) ∑
j �=1

1

En − Ẽj

(67)

expressing the trace of Green’s function for the supersymmetric partner potential Ṽ 1 with the
energy spectrum (Ẽj , j = 2, 3, . . .) in terms of two-particle densities in the potential V with
the energy spectrum (Ej , j = 1, 2, . . . , n, . . .).

We conclude by reiterating that the sum rules expressed in equations (11), (12), (15) and
(16) must be satisfied at all the nodes and extrema of the boundstate eigenfunctions of confining
potentials in one dimension. Also the sum rule in equation (23) for confining potentials is a key
result derived in this paper. As noted before it is possible to extend the sum rule to potentials
which have scattering states by the addition of an additional integral to include the contribution
from the scattering states in addition to the contribution from the discrete states which are
included in equation (23). We have focused attention on confining potentials because of the
existence of exactly solvable problems for which the sum rules can be explicitly verified. We
have verified the sum rules for two exactly solvable confining potentials. We have interpreted
one of the sum rules using the notion of two particle densities and established a connection
with the trace of Green’s function of a supersymmetric partner in supersymmetric quantum
mechanics.
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